SmarTest: Effectively Hunting Vulnerable
Transaction Sequences in Smart Contracts through
Language Model-Guided Symbolic Execution

Sunbeom So, Seongjoon Hong, Hakjoo Oh

Korea University

KOREA

UNIVERSITY

1905

USENIX Security 2021

~N o O s W DN -

Digital contract written in programming languages.

Send transactions by invoking functions in smart contracts.

function transfer (address to, uint value) public

Smart Contract

E.g., Decentralized Finance, food supply chain (IBM Food Trust).

returns (bool) {

}

require (balance[msg.sender] >= value);

balance[msg.sender] -= value;
balance[to] += value;

return true;

Solidity Function

balance
balance

v

balance
balance

X

Y

X sends 5 tokens to .

N

transfer(Y, 5)
with X=msg.sender

Importance of Securing Smart Contracts

 Immutable once deployed.

 Huge financial damage once exploited.

ETHEREUM > TECHNOLOGY
KLINT FINLEY 86.18.16 B4:38 AM

BatchOverflow Exploit Creates Trillions of
(2016) A $50 Million Hack Just Showed @ Ethereum Tokens, Major Exchanges Halt | (2018)

That the DAO Was All Too Human ERC20 Deposits

(8 o susere vveszo7 | DaFj Protocol bZx Hacked Again: S8 Million Worth of
‘Accidentally Killed It": Parity Grapples With ETH, LINK, Stablecoins Drained (Updated)

(201 7) $280 Mln LOCkEd ETH ﬁ! Author: Himadri Saha - Last Updated Sep 14, 2020 @ 17:20 (2020)
Parity is dealing with another code vulnerability which allowed a user to block access to almost In yet another full-blown attack, hackers made away with crypto funds worth more than
$300 mlIn ETH. $8 million from DeFi lending protocol bZx.

Goal: Find Vulnerabilities with
Concrete Scenarios

How to demonstrate the integer underflow at line 307?

- Sending a single transaction burnFrom (.., 1) will falil.

1 contract Example {
2 address owner;
3 mapping (address => uint) balance;
4 mapping (address => mapping (address => uint)) allowed;
5 uint totalSupply;
6
7 constructor () public {
8 owner = msg.sender;
9 totalSupply = 0;
10 }
11
12 function mintToken (address target, uint amount) public {
13 require (owner == msg.sender);
14 balance[target] += amount;
15 totalSupply += amount;
16 }
17
18 function approve(address spender, uint value)
19 public returns (bool) {
20 allowed[msg.sender][spender] = value;
21 return true;
22 }
23
24 function burnFrom (address from, uint value)
25 public returns (bool) {
26 require (balance[from] >= value);
27 require (allowed[from][msg.sender] >= value);
28 balance[from] -= value;
29 allowed[from] [msg.sender] -= value;
Un.derflow — 30 totalSupply -= value;
(line 30) 31 return true;
32 }
33 }

Goal: Find Vulnerabilities with
Concrete Scenarios

How to demonstrate the integer underflow at line 307?

- Sending a single transaction burnFrom (.., 1) will falil.

1 contract Example {
2 address owner;
3 mapping (address => uint) balance; All el initiall
4 mapping (address => mapping (address => uint)) allowed; elements are initia y Zeros.
5 uint totalSupply;
6
7 constructor () public {
8 owner = msg.sender;
9 totalSupply = 0;
10 }
11
12 function mintToken (address target, uint amount) public {
13 require (owner == msg.sender);
14 balance[target] += amount;
15 totalSupply += amount;
16 }
17
18 function approve(address spender, uint value)
19 public returns (bool) {
20 allowed[msg.sender][spender] = value;
21 return true;
22 }
23
24 function burnFrom (address from, uint value)
25 public returns (bool) { _
26 require (balance[from] >= value); Cannot pass guards if value>0.
217 require (allowed[from][msg.sender] >= value); (since balance[from]=0, allowed[from][msg.sender]=0)
28 balance[from] -= value;
29 allowed[from] [msg.sender] -= value;

Un.derflow — 30 totalSupply -= value;

(line 30) 31 return true;

32 }
33 }

Goal: Find Vulnerabilities with
Concrete Scenarios

Need a transaction sequence (a sequence of function invocations) of length at least 4.

OO UlLbdWDNER

WWWWNNNNNNNMNNNNRERRRRRRRRRO
WNHOWVWONOUBRWNROWVWOJIOUIE WN O

contract Example {
address owner;
mapping (address => uint) balance;
mapping (address => mapping (address => uint)) allowed;
uint totalSupply;

constructor () public {
owner = msg.sender;
totalSupply = 0;

}

function mintToken (address target, uint amount) public {
require (owner == msg.sender);
balance[target] += amount;
totalSupply += amount;

}

function approve(address spender, uint value)

public returns (bool) {
allowed[msg.sender][spender] = value;
return true;

}

function burnFrom (address from, uint value)
public returns (bool) {
require (balance[from] >= value);
require (allowed[from][msg.sender] >= value);
balance[from] -= value;
allowed[from] [msg.sender] -= value;
totalSupply -= value; -
return true;

Underflow
(line 30)

mintToken (A, 1)
with msg.sender = owner

totalSupply = 1,
balance[A] = 1

mintToken (B, 22°° - 1)
with msg.sender = owner

totalSupply = 0,
balance[B] = 22°° - 1

approve (C, 1)
with msg.sender = B

l allowed[B][C] = 1

burnFrom (B, 1)
with msg.sender = C

4 Overflow at line 15]

9

Can pass line 26

]

<

Can pass line 27

)

Pass line 26, 27
Underflow at line 30

In addition to simply reporting vulnerable locations,

we aim to find vulnerable sequences that can demonstrate the flaws.

Goal: Find Vulnerabilities with
Concrete Scenarios

Need a transaction sequence (a sequence of function invocations) of length at least 4.

NNHRFRRRERRRPRRRERRPRROOCIOOUV D WN R
RFOoOWVWONOUD WNKEFO

NDNDNDDN
O WN

NN
~N O

N DN
O o

wwww
wWwWNPREP O

contract Example {
address owner;
mapping (address => uint) balance;
mapping (address => mapping (address => uint)) allowed;
uint totalSupply;

constructor () public {
owner = msg.sender;
totalSupply = 0;

}

function mintToken (address target, uint amount) public {
require (owner == msg.sender);
balance[target] += amount;
totalSupply += amount;

}

function approve(address spender, uint value)

public returns (bool) {
allowed[msg.sender][spender] = value;
return true;

}

function burnFrom (address from, uint value)
public returns (bool) {

require (balance[from] >= value);

require (allowed[from][msg.sender] >= value);

mintToken (A, 1)
with msg.sender = owner

totalSupply = 1,
balance[A] = 1

mintToken (B, 22°° - 1)
with msg.sender = owner

totalSupply = 0,
balance[B] = 2%°° - 1

approve (C, 1)
with msg.sender = B

J. allowed[B][C] = 1

4 Overflow at line 15]
ﬁ Can pass line 26]

% Can pass line 27]

Without sequence information, manual bug triage is needed. L

h'

ass line 26, 27
erflow at line 30

J

\

In addition to simply reporting vulnerable locations,

we aim to find vulnerable sequences that can demonstrate the flaws.

Challenge: Path Explosion

 Huge search space for transaction sequences.

. Non-vulnerable state
. Vulnerable state
N N
H B
) N~
H B B
N\~

Challenge: Path Explosion

 Huge search space for transaction sequences.

Initial
State

. Non-vulnerable state

. Vulnerable state

A

Existing approaches (e.g., Mythril, Manticore) fail to find vulnerabilities that require long sequences.

9

SmarTest:
Language Model-Guided Symbolic Execution

NE g o=

Language Training Symbolic Training
Model Sequences Execution Contracts
e Yo m
et Ymm :
Q—’ . Q Egialv” % Testing
Testing Symbolic Vulnerable Concrete Validated
Contract Execution Sequences Validator Sequences

 Key ldea: guide symbolic execution with language models, towards likely paths.
- Training: using unguided symbolic execution, obtain vulnerable sequences and learn a model.

- Testing: according to a learned model, prioritize sequences likely to be vulnerable.

10

Detail: Learning Language Model

 Goal: construct a training corpus.

* Issue: how to abstract transaction sequences for effective generalization.

 Our Ildea: use type information.

Transaction

function setOwner (address newOwner) {

require (owner == msg.sender);
owner = newOwner;

}

Type Frequency

Mapping from types to
the number of occurrences
(in the collected sequences)

—

abstraction with

type frequency table

—

mapping
address=>uint)

uint

address

2,100

1,400

1,200

Word

<0,0,1,0,0,1, ...>
I |

Def Use

A

A variable that has address type
(3rd ranked)
Is defined and used.

Detail: Using Language Model

Transaction Sequence lo

Word Sequence <S> . <S> - Wo * W - W,
A

Pseudo-start word l

Pwy|s-s) X Pw;|s-wy X Pwy | wy-w)

Probability of
Being Vulnerable

* Prioritize the transaction sequences, according to the computed probabilities.

12

Evaluation Setup

Benchmark (Solidity): CVE (443 contracts) + Leaking-Suicidal dataset (104 contracts)

- https://qgithub.com/kupl/VeriSmart-benchmarks

Compared with 5 recently-developed tools that can generate vulnerable sequences.

- ILF [CCS ’19], Maian [ACSAC ’18], teEther [Security '18], Mythril (ConsenSys), Manticore (Trail of Bits)
Used 3-gram language model.

4-fold cross validation.

13

https://github.com/kupl/VeriSmart-benchmarks

Evaluation 1: SmarTest vs. 5 Tools

CVE Vulnerability
 [eJo]! Integer Overflow Division by Zero Assertion Violation ERC\? . IStandard Detection
lolation (Sample 242)

Mythril (ConsenSys) 460 73 25 n/a 85
35.1%
Manticore (Trail of Bits) 2 1 3 n/a 0 <

Table 1. Results on CVE dataset. Found and validated vulnerable sequences.

Ether-leaking (90 contracts) Suicidal (53 contracts)
Tool

SmarTest
ILF [CCS ’19] 75 101 n/a 50 50 n/a
Maian [ACSAC '18] 58 n/a n/a 43 n/a n/a
teEther [USENIX Security '18] 37 n/a n/a n/a n/a n/a
Mythril (ConsenSys) 14 8 8 19 19 19
Manticore (Trail of Bits) 9 9 9 3 3 3

Table 2. Results on Leaking-Suicidal dataset. Found and validated (when available) vulnerable sequences.
14

Evaluation 2: Effectiveness of
Using Language Model

Baseline: SmarTest without language model (i.e., prioritize short sequences)

3-gram: SmarTest with 3-gram language model

CVE dataset Leaking-Suicidal dataset

w
o
o
o
=
(*2]
o

N
W
o
o

=
o
l
0
|

[
N
o

N
o
o
o
[
o
o

n
1500 4=
-

(o)
o
!

(o))
o
]

1000 -

§ =N
o
]

—<— paseline

—<— baseline

500 -

of found vulnerable sequences
of found vulnerable sequences

i 3-gram 20 3-gram
OE)_E ZéO 560 7%0 IOIOO 12150 15100 17150 ° 0 : 2,‘]‘;0 560 7;0 10100 12150 ISIOO 17]50
. time budget (s) per contract time budget (s) per contract
v v
68s (vs. 1,817s) 140s (vs. 1,770s)

Language model significantly improves the vulnerability-finding capability of symbolic execution.

15

Evaluation 3: Finding Zero-day Bugs

e Ran SmarTest on 2,743 contracts from Etherscan.

 Manually confirmed 7 critical vulnerabilities (ERC20 Standard Violation).

Pattern 1: Due to mistakenly named constructors, anyone can tokens for free.

1 contract AToken {
2 /* Constructor function */ _
3 function BToken () pub]_j_c { “BTOken” at I|ne 3 ShOUld be
4 balance[msg.sender] = 10000000000; Changed to “Aloken”.
5 totalSupply = 10000000000;
6 }
7 .
Pattern 2: Unrestricted token transfer by unauthorized users.
1 function transferFrom (address from, address to,
2 uint value) public returns (bool) {
3 require (balance[from] >= value);
4 require(balance[to] + value >= balance[to]);
require(allowed[from][msg.sender] >= value); Red-colored part is absent
5 balance[from] -= value; |n the Orlglnal Code
6 balance[to] += value;
7 return true;
8 1}

16

Summary

 Goal: effectively find vulnerable transaction sequences.

 Key ldea: guide symbolic execution with language models, towards likely paths.

Lol |
. § 3000 § 260
«— T — — | = QC) qc)
’ —_— L 3 2500 5 140
3 A 120 X
Language Training Symbolic Training = 3 100
Model Sequences Execution Contracts o O
L 1500 L g0
1 E 3
T 1000 o .
— HEHIH Was 2 —<— baseline 2 4] —*— baseline
— — — R m = — — Yuu y— 500 Y—
— —— Y © 3-gram O 201 3-gram
#
Testing Symbolic Vulnerable Concrete Validated ° 0 2%0 . 560 b d7é0t 10100 12150t 1tS100 17I50 ° 0 2%0 t 560 b d7éot 10100 12I50t ltleO 17]50
Contract Execution Sequences Validator Sequences time budget (s) per contrac ime budget (s) per contrac

SmarTest: http://prl.korea.ac.kr/smartest
Benchmark: https://github.com/kupl/VeriSmart-benchmarks

Thank you!

17

http://prl.korea.ac.kr/smartest
https://github.com/kupl/VeriSmart-benchmarks

