
SmarTest: Effectively Hunting Vulnerable
Transaction Sequences in Smart Contracts through

Language Model-Guided Symbolic Execution

Sunbeom So, Seongjoon Hong, Hakjoo Oh

USENIX Security 2021

Korea University

Smart Contract

• Digital contract written in programming languages.

- E.g., Decentralized Finance, food supply chain (IBM Food Trust).

• Send transactions by invoking functions in smart contracts.

2

Solidity Function

1 function transfer (address to, uint value) public
2 returns (bool) {

3 require (balance[msg.sender] >= value);
4 balance[msg.sender] -= value;

5 balance[to] += value;
6 return true;
7 }

balance[X] = 20,

balance[Y] = 0

transfer(Y, 5)

with X=msg.sender

balance[X] = 15,

balance[Y] = 5

X sends 5 tokens to Y.

Importance of Securing Smart Contracts

• Immutable once deployed.

• Huge financial damage once exploited.

(2018)(2016)

(2017) (2020)

3

4

• How to demonstrate the integer underflow at line 30?

- Sending a single transaction burnFrom (…, 1) will fail.

1 contract Example {

2 address owner;

3 mapping (address => uint) balance;

4 mapping (address => mapping (address => uint)) allowed;

5 uint totalSupply;

6
7 constructor () public {

8 owner = msg.sender;

9 totalSupply = 0;

10 }

11

12 function mintToken (address target, uint amount) public {

13 require (owner == msg.sender);

14 balance[target] += amount;
15 totalSupply += amount;
16 }

17
18 function approve(address spender, uint value)

19 public returns (bool) {

20 allowed[msg.sender][spender] = value;

21 return true;

22 }

23

24 function burnFrom (address from, uint value)

25 public returns (bool) {

26 require (balance[from] >= value);

27 require (allowed[from][msg.sender] >= value);

28 balance[from] -= value;
29 allowed[from][msg.sender] -= value;

30 totalSupply -= value;
31 return true;

32 }

33 }

Underflow

(line 30)

Goal: Find Vulnerabilities with
Concrete Scenarios

5

• How to demonstrate the integer underflow at line 30?

- Sending a single transaction burnFrom (…, 1) will fail.

1 contract Example {

2 address owner;

3 mapping (address => uint) balance;

4 mapping (address => mapping (address => uint)) allowed;

5 uint totalSupply;

6
7 constructor () public {

8 owner = msg.sender;

9 totalSupply = 0;

10 }

11

12 function mintToken (address target, uint amount) public {

13 require (owner == msg.sender);

14 balance[target] += amount;
15 totalSupply += amount;
16 }

17
18 function approve(address spender, uint value)

19 public returns (bool) {

20 allowed[msg.sender][spender] = value;

21 return true;

22 }

23

24 function burnFrom (address from, uint value)

25 public returns (bool) {

26 require (balance[from] >= value);

27 require (allowed[from][msg.sender] >= value);

28 balance[from] -= value;
29 allowed[from][msg.sender] -= value;

30 totalSupply -= value;
31 return true;

32 }

33 }

Underflow

(line 30)

Cannot pass guards if value>0.

(since balance[from]=0, allowed[from][msg.sender]=0)

All elements are initially zeros.

Goal: Find Vulnerabilities with
Concrete Scenarios

Goal: Find Vulnerabilities with
Concrete Scenarios

6

• Need a transaction sequence (a sequence of function invocations) of length at least 4.

In addition to simply reporting vulnerable locations,

we aim to find vulnerable sequences that can demonstrate the flaws.

mintToken (A, 1)

with msg.sender = owner

approve (C, 1)

with msg.sender = B

mintToken (B, - 1)

with msg.sender = owner

2256

totalSupply = 1,

balance[A] = 1

totalSupply = 0,
balance[B] = - 12256

burnFrom (B, 1)

with msg.sender = C

allowed[B][C] = 1

Overflow at line 15

Can pass line 27

Can pass line 26

Pass line 26, 27

Underflow at line 30

1 contract Example {

2 address owner;

3 mapping (address => uint) balance;

4 mapping (address => mapping (address => uint)) allowed;

5 uint totalSupply;

6
7 constructor () public {

8 owner = msg.sender;

9 totalSupply = 0;

10 }

11

12 function mintToken (address target, uint amount) public {

13 require (owner == msg.sender);

14 balance[target] += amount;
15 totalSupply += amount;
16 }

17
18 function approve(address spender, uint value)

19 public returns (bool) {

20 allowed[msg.sender][spender] = value;

21 return true;

22 }

23

24 function burnFrom (address from, uint value)

25 public returns (bool) {

26 require (balance[from] >= value);

27 require (allowed[from][msg.sender] >= value);

28 balance[from] -= value;
29 allowed[from][msg.sender] -= value;

30 totalSupply -= value;
31 return true;

32 }

33 }

Underflow

(line 30)

Goal: Find Vulnerabilities with
Concrete Scenarios

7

• Need a transaction sequence (a sequence of function invocations) of length at least 4.

In addition to simply reporting vulnerable locations,

we aim to find vulnerable sequences that can demonstrate the flaws.

mintToken (A, 1)

with msg.sender = owner

approve (C, 1)

with msg.sender = B

mintToken (B, - 1)

with msg.sender = owner

2256

totalSupply = 1,

balance[A] = 1

totalSupply = 0,
balance[B] = - 12256

burnFrom (B, 1)

with msg.sender = C

allowed[B][C] = 1

Overflow at line 15

Can pass line 27

1 contract Example {

2 address owner;

3 mapping (address => uint) balance;

4 mapping (address => mapping (address => uint)) allowed;

5 uint totalSupply;

6
7 constructor () public {

8 owner = msg.sender;

9 totalSupply = 0;

10 }

11

12 function mintToken (address target, uint amount) public {

13 require (owner == msg.sender);

14 balance[target] += amount;
15 totalSupply += amount;
16 }

17
18 function approve(address spender, uint value)

19 public returns (bool) {

20 allowed[msg.sender][spender] = value;

21 return true;

22 }

23

24 function burnFrom (address from, uint value)

25 public returns (bool) {

26 require (balance[from] >= value);

27 require (allowed[from][msg.sender] >= value);

28 balance[from] -= value;
29 allowed[from][msg.sender] -= value;

30 totalSupply -= value;
31 return true;

32 }

33 }

underflow

(line 30)

Can pass line 26

Pass line 26, 27

Underflow at line 30Without sequence information, manual bug triage is needed.

8

Challenge: Path Explosion

• Huge search space for transaction sequences.

Initial

State

…

……

… …

Vulnerable state

Non-vulnerable state

9

Challenge: Path Explosion

• Huge search space for transaction sequences.

Initial

State

…

……

Existing approaches (e.g., Mythril, Manticore) fail to find vulnerabilities that require long sequences.

Vulnerable state

Non-vulnerable state

… …

SmarTest:
Language Model-Guided Symbolic Execution

10

• Key Idea: guide symbolic execution with language models, towards likely paths.

- Training: using unguided symbolic execution, obtain vulnerable sequences and learn a model.

- Testing: according to a learned model, prioritize sequences likely to be vulnerable.

Training

Testing

Detail: Learning Language Model

11

• Goal: construct a training corpus.

• Issue: how to abstract transaction sequences for effective generalization.

• Our Idea: use type information.

Transaction

Type Frequency

mapping

(address=>uint) 2,100

uint 1,400

address 1,200

abstraction with

type frequency table

function setOwner (address newOwner) {

 require (owner == msg.sender);

 owner = newOwner;

}

Word

A variable that has address type

(3rd ranked)

is defined and used.

<0, 0, 1, 0, 0, 1, …>
Def Use

Mapping from types to

the number of occurrences

(in the collected sequences)

Detail: Using Language Model

12

P(w0 ∣ s ⋅ s) × P(w1 ∣ s ⋅ w0) × P(w2 ∣ w0 ⋅ w1)

t0 ⋅ t1 ⋅ t2Transaction Sequence

Word Sequence

Probability of
Being Vulnerable

Pseudo-start word

⟨s⟩ ⋅ ⟨s⟩ ⋅ w0 ⋅ w1 ⋅ w2

• Prioritize the transaction sequences, according to the computed probabilities.

Evaluation Setup

13

• Benchmark (Solidity): CVE (443 contracts) + Leaking-Suicidal dataset (104 contracts)

- https://github.com/kupl/VeriSmart-benchmarks

• Compared with 5 recently-developed tools that can generate vulnerable sequences.

- ILF [CCS ’19], Maian [ACSAC ’18], teEther [Security ’18], Mythril (ConsenSys), Manticore (Trail of Bits)

• Used 3-gram language model.

• 4-fold cross validation.

https://github.com/kupl/VeriSmart-benchmarks

Evaluation 1: SmarTest vs. 5 Tools

14

Tool Integer Overflow Division by Zero Assertion Violation ERC20 Standard
Violation

CVE Vulnerability
Detection

(Sample: 242)

SmarTest 1982 203 77 654 219

Mythril (ConsenSys) 460 73 25 n/a 85

Manticore (Trail of Bits) 2 1 3 n/a 0

Table 1. Results on CVE dataset. Found and validated vulnerable sequences.

Tool
Ether-leaking (90 contracts) Suicidal (53 contracts)

#Contract #Function #Line #Contract #Function #Line

SmarTest 81 111 111 51 51 51

ILF [CCS ’19] 75 101 n/a 50 50 n/a

Maian [ACSAC ’18] 58 n/a n/a 43 n/a n/a

teEther [USENIX Security ’18] 37 n/a n/a n/a n/a n/a

Mythril (ConsenSys) 7 8 8 19 19 19

Manticore (Trail of Bits) 9 9 9 3 3 3

Table 2. Results on Leaking-Suicidal dataset. Found and validated (when available) vulnerable sequences.

35.1%

90.5%

Evaluation 2: Effectiveness of
Using Language Model

15

• Baseline: SmarTest without language model (i.e., prioritize short sequences)

• 3-gram: SmarTest with 3-gram language model

68s (vs. 1,817s) 140s (vs. 1,770s)

Language model significantly improves the vulnerability-finding capability of symbolic execution.

CVE dataset Leaking-Suicidal dataset

Evaluation 3: Finding Zero-day Bugs

16

• Ran SmarTest on 2,743 contracts from Etherscan.

• Manually confirmed 7 critical vulnerabilities (ERC20 Standard Violation).

1 contract AToken {

2 /* Constructor function */

3 function BToken () public {

4 balance[msg.sender] = 10000000000;

5 totalSupply = 10000000000;

6 }

7 ...

Pattern 1: Due to mistakenly named constructors, anyone can tokens for free.

Pattern 2: Unrestricted token transfer by unauthorized users.

1 function transferFrom (address from, address to,

2 uint value) public returns (bool) {

3 require(balance[from] >= value);

4 require(balance[to] + value >= balance[to]);

 require(allowed[from][msg.sender] >= value);

5 balance[from] -= value;

6 balance[to] += value;

7 return true;
8 }

“BToken” at line 3 should be

changed to “AToken”.

Red-colored part is absent

in the original code.

Summary

17

• Goal: effectively find vulnerable transaction sequences.

• Key Idea: guide symbolic execution with language models, towards likely paths.

 SmarTest: http://prl.korea.ac.kr/smartest

 Benchmark: https://github.com/kupl/VeriSmart-benchmarks

Thank you!

http://prl.korea.ac.kr/smartest
https://github.com/kupl/VeriSmart-benchmarks

